Stability and Hopf Bifurcation in a Delayed HIV Infection Model with General Incidence Rate and Immune Impairment
نویسندگان
چکیده
We investigate the dynamical behavior of a delayed HIV infection model with general incidence rate and immune impairment. We derive two threshold parameters, the basic reproduction number R 0 and the immune response reproduction number R 1. By using Lyapunov functional and LaSalle invariance principle, we prove the global stability of the infection-free equilibrium and the infected equilibrium without immunity. Furthermore, the existence of Hopf bifurcations at the infected equilibrium with CTL response is also studied. By theoretical analysis and numerical simulations, the effect of the immune impairment rate on the stability of the infected equilibrium with CTL response has been studied.
منابع مشابه
HOPF BIFURCATION CONTROL WITH PD CONTROLLER
In this paper, we investigate the problem of bifurcation control for a delayed logistic growth model. By choosing the timedelay as the bifurcation parameter, we present a Proportional - Derivative (PD) Controller to control Hopf bifurcation. We show that the onset of Hopf bifurcation can be delayed or advanced via a PD Controller by setting proper controlling parameter. Under consideration mode...
متن کاملAnalysis of a viral infection model with immune impairment and cure rate
In this paper, the dynamics behavior of a delayed viral infection model with immune impairment and cure rate is studied. It is shown that there exists three equilibria. By analyzing the characteristic equations, the local stability of the infection-free equilibrium and the immune-exhausted equilibrium of the model are established. In the following, the stability of the positive equilibrium is s...
متن کاملStability and Bifurcation of an SIS Epidemic Model with Saturated Incidence Rate and Treatment Function
In this paper an SIS epidemic model with saturated incidence rate and treatment func- tion is proposed and studied. The existence of all feasible equilibrium points is discussed. The local stability conditions of the disease free equilibrium point and endemic equilibrium point are established with the help of basic reproduction number.However the global stabili- ty conditions of these eq...
متن کاملThe Dynamical Analysis of a Delayed Prey-Predator Model with a Refuge-Stage Structure Prey Population
A mathematical model describing the dynamics of a delayed stage structure prey - predator system with prey refuge is considered. The existence, uniqueness and bounded- ness of the solution are discussed. All the feasibl e equilibrium points are determined. The stability analysis of them are investigated. By employ ing the time delay as the bifurcation parame...
متن کاملCenter manifold analysis and Hopf bifurcation of within-host virus model
A mathematical model of a within-host viral infection is presented. A local stability analysis of the model is conducted in two ways. At first, the basic reproduction number of the system is calculated. It is shown that when the reproduction number falls below unity, the disease free equilibrium (DFE) is globally asymptotically stable, and when it exceeds unity, the DFE is unstable and there ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015